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Thermal instabilities in two-fluid horizontal layers 
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An analytical and experimental study of thermally induced instability in hori- 
zontal two-fluid layers is reported. A linear stability analysis for two initially 
motionless, viscous immiscible fluids confined between horizontal isothermal 
solid surfaces and subject to both density (Bknard) and surface-tension-gradient 
(Marangoni) driving mechanisms is presented. Calculations for the laboratory 
configuration reported below predict instability for heating from above or below. 
Response is strongly dependent on the ratios of the properties of the fluids, the 
total depth of the layer and the depth fraction of one fluid. Three different 
response modes occur (interfacial-tension-gradient dominated, buoyancy domi- 
nated and surface-deflexion dominated) depending on the fluid depth fractions. 
When the heating is from above, the buoyancy mechanism is stabilizing for most 
wavenumbers, including the critical one. Heating from below lowers the critical 
Marangoni number and adds a buoyancy driven response mode. Results of 
experimental measurements of the critical Marangoni number for layers of total 
depth 2mm consisting of benzene over water with a water depth fraction of 
0.40 are also presented. No instability was detected in any case for heating from 
above, even though the Marangoni number exceeds the predicted critical value 
by as much as five times. The critical Rayleigh number observed for heating 
from below falls between the critical values predicted with and without the 
Marangoni effect. The presence of surface contamination is believed to be 
responsible for the apparent lack of convection when heating is from above and 
for the difference between the predicted and measured critical Rayleigh number 
when heating is from below. 

1. Introduction 
Bbnard's (1 900) experimental study of the regular-hexagon circulation pattern 

in a thin layer of fluid heated from below has been the catalyst for many research 
papers. The onset of this ' cellular ' motion in an initially stationary fluid has been 
of particular interest .t 

Two principal cellular convection mechanisms have been identified: (i) 

t An excellent review of cellular convection is presented by Berg, Aorivos & Boudart 
(1966). 
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buoyancy resulting from thermally induced density gradients (Bbnard convec- 
tion) and (ii) interfacial forces due to surface tension variations produced by 
temperature or concentration gradients (Marangoni convection). Associated 
with each of these mechanisms is a critical value of a parameter which divides 
stable from unstable initial states. An appropriate parameter for density gradient 
instability is the Rayleigh number 

Ra = gpATd3/vK. 

Here g is the acceleration due to gravity, = -p- l (ap/aT) ,  is the isobaric com- 
pressibility, p the density, p the pressure, AT the positive temperature difference 
across the layer, d the layer thickness, Y the kinematic viscosity and K the thermal 
diffusivity. Surface-tension-gradient driven motion is often called the Maran- 
goni effect; the relevant critical parameter is the Marangoni number 

M a  = ( - da/dT)ATd/ ,uK.  

Here, cr is the surface tension and ,u the dynamic viscosity. Note that dcr/dT is 
usually negative. The principal concern of theoretical analysis is the determina- 
tion of critical Rayleigh or Marangoni number for a variety of initial states. 

BBnard instability was first analysed by Rayleigh (1916). Subsequently 
Jeffreys (1926, 1928), Low (1929) and Pellew & Southwell (1940) extended and 
polished Rayleigh's work. Schmidt & Milverton (1935) and Silveston (1958) 
verified experimentally the predictions of the onset of B6nard convection in 
fluids confined between horizontal isothermal solid surfaces. 

Pearson (1958) showed that the Marangoni effect can also cause an instability 
in a thin fluidlayer. He considered a thin film of infinite extent with a solid bottom 
surface and free top surface. The surface tension was assumed to be a linear 
decreasing function of temperature and the deficit of surface ttension force 
between two points on the interface was balanced by shear forces. He ignored 
gravity, and therefore density-gradient effects, and the effects of a superposed 
fluid. In addition the interface was assumed to remain flat (undeformed) and the 
heat-transfer coeffioient on the upper surface was assumed to be independent of 
the convective motion. His analysis indicates instability only for heating from 
the solid boundary. For fluids where the surface tension increases with increasing 
temperature, instability occurs only for heating from the free surface. 

Sternling & Scriven (1959) considered Marangoni instability induced by 
concentration gradients at the interface of two fluids. Buoyancy effects and 
surface deflexions were ignored. This model shows instability for mass transfer in 
either direction. They subsequently accounted for the effect of mean surface 
tension by allowing the surface to deflect (Scriven & Sternling 1964). Smith 
(1966) included gravity waves (but not buoyancy) in a two-fluid model and also 
found instability for heating in either direction. Nield (1964) applied Pearson's 
variable-surface-tension boundary condition to a fluid layer subject to buoyancy. 
He showed that when the mechanisms reinforce one another they are closely 
coupled. They also mutually influence the stability limit. 

Despite the wide range of phenomena incorporated in previous analyses, no 
single one includes all the effects which would be present in an experiment subject 



307 

-m- 
X 

d 4 

FIGURE 1. Co-ordinate frame for system model. 

to Marangoni instability. Therefore a new analysis is necessary to support an 
experimental determination of critical Marangoni number. The model must 
include (i) two fluids to allow for instability for transfer in either direction, 
(ii) both the BBnard and the Marangoni effect (buoyancy should have a significant 
influence on stability limits), (iii) a deformable interface to account for the effect 
of mean surface tension, (iv) continuous temperature and heat flux across the 
interface. Such an analysis and corresponding experiments are presented in 
this paper. Calculated results for a particular case are compared with experimen- 
tal data. This work is described in more detail in Zeren & Reynolds (1970), 
hereafter referred to as I. 

2. Analysis 
Consider two immiscible viscous fluids bounded by horizontal, isothermal 

solid surfaces of infinite extent, as shown in figure 1. A Cartesian co-ordinate 
system is established with g, the gravitational acceleration, in the negative z 
direction with z measured from the undisturbed interface. The upper fluid is 
designated as a (above) and the lower fluid as b (below), and the fluid depths are 
d, and d,, respectively. The total depth is d. Surface deflexions from the z = 0 
plane are represented by s(x, y, t ) ,  where t is time. In  the initial state, the tempera- 
ture, and thus the density, varies linearly in the z direction in each phase and the 
surface tension is uniform on the interface. When motion occurs the density of 
fluid particles may change and the interfacial tension may vary along the 
interface, but all other properties are presumed to be both uniform in each phase 
and constant in time. 

The linearized dynamical equations describing departures from this initial 
state are well-known? (see Pellew & Southwell 1940, for example). They are, 
within each fluid, the continuity equation 

au av aw -+-+- = 0, ax ay az 

7 For a detailed derivation of these equations including a discussion of the applicability 
of the Boussinesq approximation for variable density fluids see I. 

20-2 
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momentum equation 

and energy equation aept + yw = K v 2 e .  (3) 

Here u, v, w are the x, y, z components of the disturbance velocity, respectively, 
p is the disturbance pressure, 8 the disturbance temperature, y the initial 
temperature gradient and V2 = a2/ax2 + Play2 + P/az2 .  

The velocity and temperature perturbations must vanish on the solid surfaces, 
requiring 

(4) 
u, = v, = w, = 0, = 0 on = d,, 
u b  = vb = wb = e b  = 0 On z = - d b .  

The interface conditions are transferred from z = s(x, y, t )  to z = 0 by Taylor 
expansion. The resulting linearized interfacial conditions (to be applied at z = 0) 
are as follows. 

Kinematic condition (for each fluid) : 

w = a s p .  (5) 

Continuity of velocity, temperature and heat flux : 

where k is the thermal conductivity. 
Lateral stress continuity : 

Vertical stress continuity : 

All fluid properties are evaluated at  the initial interface temperature. 
The dynamical equations and the boundary equations are linear and homo- 

geneous in the disturbance variables u, v, w,p,  8 and s. Hence they define an 
eigenvalue problem in which the eigenfunctions correspond to the particular 
disturbances for which the convective motion can begin. Since the coefficients 
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are independent of time, the eigenfunctions are assumed to have the form 

where both the z and the (x, y )  functions and q = q,+iqi are in general complex. 
The complex conjugate is necessary to yield the necessarily real solutions for 
the physical problem. 

The parameter q is the eigenvalue associated with a particular disturbance. 
If qr > 0, the associated disturbance grows and the initial state is unstable to 
that disturbance; if qT c 0, the disturbance decays and the initial state is stable. 
Disturbances for which 9; = 0 are neither amplified nor damped and therefore 
are called marginally stable. For a marginally stable disturbance qi need not be 
zero; fixed amplitude periodic disturbances may exist. If for all marginally 
stable and amplified disturbances qi is always zero (no oscillatory motions) the 
equations can be greatly simplified by setting q = 0. This circumstance is com- 
monly called the ‘exchange of stabilities’. Exchange of stabilities has been 
proved valid for density-gradient convection subject to a variety of boundary 
conditions (Pellew & Southwell 1940) and for surface-tension-gradient convec- 
tion in one fluid subject to Pearson’s surface condition (Vidal & Acrivos 1966). 
This exchange was assumed without proof by Pearson (1958), Scriven & Sternling 
(1964), Nield (1964) and Smith (1966). However, Sternling & Scriven (1959) 
found both stationary and oscillatory marginal states for a two-fluid Marangoni 
convection model. There is, therefore, some doubt about when the exchange of 
stabilities assumption is valid. If qi = 0 is assumed and instability is found, the 
apparent critical Marangoni number must be an upper bound on the true critical 
Marangoni number. With due appreciation of this implication, the exchange of 
stabilities is assumed here and q is set identically zero. Some other parameter of 
the problem, such as the Rayleigh or Marangoni number, may now be used as 
the eigenvalue, with its value defining a state of marginal stability. 

Substitution of (12) into ( l ) ,  (2) and (3) and extraction of the equations 
describing &(z) and B(z) yields, in each fluid, 

( 0 2 -  .2)2&(Z) = (a2/3g/v) B(2) (13) 

and (02 - cX2) o(2 )  = ( Y / K )  a@), (14) 

where D = d/dz and 01 is the disturbance wavenumber. Eigensolutions in the form 
(12) are found to exist only for disturbances which satisfy 

(vp, + a2) W ( x ,  y )  = 0. (15) 

where OfI = a2/ax2 + a2/ay2, and only when W(x,  y )  = a(%, y )  = #(x, y) = P ( x ,  y ) ,  
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o(x ,  y) = aW/ax and r ( x ,  y) = ap/ay.  Also, the vertical boundaries must be im- 
permeable surfaces of symmetry, which corresponds to  an array of cells in a fluid 
of infinite extent. Solutions to (15) for all close-packing plan-form geometries are 
known (Pellew & Southwell 1940). Equations (13) and (14) hold for any planform. 

The equations and boundary conditions are now combined to obtain a manage- 
able set from which the eigenfunctions and eigenvalues are obtained. Substituting 
for 8 ( z )  from (14) into (13 )  gives within each fluid 

{(D2 - ~ 1 . ~ ) ~  - a2/3gy/.K} Q(z) = 0. 

8, = 8, = 0, (17) 

D&, = Dab, (18) 

(16) 

After elimination of u, v and p by manipulation of (1) and (2) the interface con- 
ditions (at z = 0) become 

,LL*(D2 - a2) 8,- (02 -a2) 8, = ( -dV/dT)  a2/,!.+,[Qb + Y b  $1 (21) 

and (D2-33CL2) D8b-,L4*(D2-3CX2) D 8 ,  = a 2 / ~ b [ p b - p a + a 2 ~ ]  8, (22) 

8, = 0, D 8 ,  = 0, Oa = 0 (23) 

and at  z = -$ 8 b  = 0, Dab = 0, ob = 0. (24) 

where p* = ,uCa/,ub and (9) and (10) have collapsed into (21). At z = d, 

Note that continuity of temperature in the initial state requires that k* = yb/ya. 
The problem now consists of a sixth-order equation for I!? with each fluid (equation 
(16)),  twelve boundary conditions and an equation for the surface deflexion 8. 

The general solution to (16) is, in each fluid, 

where the C$,n are as yet unknown constants and q5 = a denotes the upper fluid 
and q5 = b the lower. Here 

T$,n = (- I)"+%%( 1 $-@,9#)+, 

where 9, = i(qy~/vKa4)*1 

and w, is as given in table 1, so that w5 and we are the complex conjugates of w, 
and w4 respectively. 
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Substitution of (25) into the appropriate boundary and interface conditions, 
(17)-(24), yields thirteen linear homogeneous algebraic equations for the thirteen 
unknown constants Ct,,n and ybyaŝ  = CIS. For the solutions to be non-trivial, the 
characteristic determinant D of the coefficient matrix C must vanish. The 
coefficient matrix may be non-dimensionalized by referring all lengths to the 
total gap width d, by defining d% = d,/d, d$ = d b / d ,  a* = ad, r$,, = r+,,d and 
then dividing each row by appropriate property groupings. For details see I. 

The dimensionless groups arising out of this analysis are the following: 

Rayleigh number = gbbYbd41’bKb, 

Marangoni number 

Bond number Bob = gpbd2/ (T,  

Crispation group crb = P b  Kb/(Td, 

Ma, = ( -da/dT) ybd2//-%Kb, 

and the physical property ratios K* = K,/Kb, I%*, p*, /3* = /3,//3b and p* = ,oa/pb. 

Notice that no arbitrary scaling of the velocity is made. Also note that the 
Rayleigh and Marangoni numbers are negative for heating from below and 
positive for heating from above. 

Either Rub or Mab can be considered as the eigenvalue, but for any given 
initial state 

. h b / M a b  = p b g B b d 2 / (  -dC/dT)  = r, 
a constant, i.e. independent of temperature. The characteristic determinant 
then explicitly depends on eleven parameters: Ma,, I’, Bob, C r b ,  a:, K* ,  p*, I%*, 
p*, /3* and a*. The smallest value of Mab for which D = 0 is determined by 
varying Mab for a given parameter set and a* until D vanishes. Since Mab is 
transcendentally imbedded in the elements of C ,  an iterative solution is necessary. 
Since the elements are also complex, the real and imaginary parts of D must 
vanish identically for a real value of Ma,. However, a closer inspection of (16) 
and the boundary conditions reveals that no complex quantities appear. Since 
the operator is real, the complex conjugate operator must also be real, and the 
solutions represented in (25) are real. There is, therefore, a real representation of 
the matrix eigenvalue problem, and the zeros of D may be found by varying the 
real eigenvalue Ma,. 

If L* = 1, p* = 1 and (T = 0 the coefficients of C,, = yb3 vanish identically, 
column 13 of C is filled with zeros and D is always zero. This circumstance occurs 
only if there is in fact only one fluid. The equations, boundary conditions and 
coupling conditions are still valid (with the appropriate terms equal to zero) and 
apply to the one-fluid buoyancy problem. However, since flow may now cross the 
‘interface ’, the vertical velocity component on the interface is not necessarily 
zero. By imposing this condition as row 13 of the coefficient matrix it is possible 
to reduce C to  a 12 x 12 matrix and treat the one-fluid buoyancy problem. 
Since there is no interface for one fluid the loss of column 13 is acceptable. The 
coupling conditions are now applied on an artificial or ‘phantom’ interface. 

A digital computer program was written to automatically find the zeros of D.  
A single program treats the coupled Marangoni-B6nard problem, the one-fluid 
buoyancy problem and the two-fluid buoyancy problem with dg/dT set identi- 
cally zero. The program has been checked by computing the critical Rayleigh 
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numbers for the one-fluid B6nard problem by dropping row and column thirteen 
of C as discussed above. Results for various locations of the phantom interface 
(various values of d ” )  agree quite well with the definitive eigenvalues reported by 
Reid & Harris (1958) (see I). 

Once the eigenvalues are known, the constants C+,n and hence the eigenfunc- 
tions are found. As a check of the computing program, eigenfunctions for the one- 
fluid buoyancy problem were verified by comparison with the eigenfunctions 
calculated by Reid & Harris (1958). 

Additional information about the interactions of the two driving mechanisms 
and the source of the driving energy was found from the integral mechanical 
energy equation for the perturbation flow. If the linearized disturbance momen- 
tum equationsin each fluid are multiplied by the velocity components ui, summed 
and integrated over the volume V, of one ‘cell’, the integral mechanical energy 
equation for the perturbation results: 

Here V, is the cell volume in each fluid and 

Summation notation is used. The left-hand integral is the time rate of change of 
the kinetic energy of the perturbation. This term is zero for the marginal case 
with the exchange of stabilities assumed. The first term on the right is the inter- 
action of the pressure and velocity fields, the second is the energy input due to the 
buoyancy driving mechanism and the third term is the shear work term. 

These terms can be evaluated for disturbances of the form of (12). The x, y 

dependence then is confined to the positive-definite integral I 2  = W V A ,  where 

A is the cell cross-sectional area, which is the same for each fluid. Evaluation of 
the buoyancy integral is straightforward. With the help of Green’s identities the 
pressure-velocity integral can be shown to be zero everywhere except on the 
interface. The pressure then may be eliminated and the integral written in terms 
of a(0) and P. The shear work term contains the work input to the fluid at  the 
surface and the dissipation integral. Applying Green’s identity to this integral 

Tij = auilaxj + auj/axi. 

s, 

uirij cos (n, xj) &S, (27) 
gives 

where n is measured along the outward-pointing normal to the cell surface X 
and cos (n, xi) is the cosine of the angle between n and xi. 

The surface integral, which is now in the form of a power input, vanishes on the 
solid wall because ui = 0 and on the vertical cell walls because the walls are shear- 

free impermeable and parallel to z. The integral T v uiri3dSI over the inter- 

face 8, remains, where the signs reflect the alignment of x with n so that the upper 
sign goes with the upper fluid and the lower sign with the lower fluid. The dis- 
turbance (12) is substituted and u and w eliminated to give 

s,, 
T VCC-~B@(O) [O2&(0) + 3a2@(0)] e*.12. (28) 
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The volume integral on the right of equation (27) is commonly called the dis- 
sipation integral. Substituting (12) and eliminating u and v yields 

+ 212jz (D&)2 dx + 1% (0% + 0 1 ~ @ ) ~  dx) . (29) 

The area integral in (29) may be shown to equal a412 by using Green's identity for 
a surface integral and equation (15). 

For the case of marginal stability, then, the disturbance mechanical energy 
equation may be written as 

2 = 0 = -t va-28(0) [02-a2] 0 8 ( 0 )  +pg O i d x  s, dE 
at 

- v [  /z{4(D@)2+a-2[(D2+a2)8]2}dzf  0l-~D8(0) [B2+ 3a2]8(0)]. (30) 

Here E+ is the kinetic energy in each phase divided by I 2  and the integration 
limit x indicates integration over x in the direction appropriate to the cell and 
phase being considered. This development is presented in more detail in I. 

The first term on the right-hand side is the power input to the fluid from the 
pressure on the interface; where q = 0 and a distinct interface exists this term is 
zero since @ ( O )  is zero. For the one-fluid buoyancy problem, where w(0) + 0, 
energy may be transferred across the phantom interface owing to pressure 
forces but the net increase or decrease of total energy is zero. The next term is the 
power input from the buoyancy forces. For a stably stratified density this term 
should always be negative since work must be done to upset the stable equili- 
brium. The term in curly brackets contains the viscous dissipation integral and 
the surface-shear work term. The dissipation is always negative. The net surface 
power contribution is the measure of power input from the Marangoni effect. If 
the Marangoni effect is present, the variation in surface tension may or may not 
be doing work on the fluid, depending on the velocity and temperature at the 
interface. If the Marangoni effect has been suppressed, the surface term can only 
be zero. 

Comparison of the net power inputs from the buoyancy and surface tension 
mechanisms indicates the principal energy source driving the instability. 

3. Numerical calculations 
3.1. &peci$c calculated system 

Calculations were made for layers of benzene over water with a total depth of 
2 mm and various water depth fractions dg. Experiments for this configuration 
are reported in $4. Water and benzene were selected because they meet the 
criterion established by Sternling & Scriven (1959) for instability for heating 
from either direction; both the kinematic viscosity and thermal diffusivity of 
water are greater than those of benzene. This criterion is met for few combina- 
tions of immiscible liquids. Liquids also preclude radiant heat exchange at the 
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T k* K* P* P* 8* r Bo;' Bo,/Cr, 
16 "C 0.274 0.730 0.886 0.605 7.06 0.142 0.840 548000 
36 "C 0.240 0-600 0.872 0.766 3.00 0.256 0.825 807000 

TABLE 2. Summary of property ratios and parameters 

103 I OJ 
Marangoni number, Ma, 

FIGURE 2. Marginally stable Marangoni number as a function of wavenumber for various 
water depth fractions for heating from above. Benzene over water, total depth = 2 mm. 

interface, which agrees with the model, and make the temperature differences 
across each layer more nearly equal than if a gas and a liquid are used. Water and 
benzene are also readily available in chemically pure (reagent) grades and their 
properties are well-known, so that they can be used for experiments. Properties 
and property ratios evaluated at two temperatures bounding the experiments 
described below are summarized in table 2 .  Most calculations were made for 
properties at 16 "C. 

The (a-Ma,) plane was searchedfor the zeros of D corresponding to the smallest 
Marangoni numbers. The results are compared with the equivalent pureMarangoni 
effect case as calculated by Smith (1966). Representative eigenfunctions and 
energy integrals are also presented. An asymptotic analysis for a* -+ 0 prompted 
by these results is described in the appendix. For more detail see I. 

3.2. Results for heating from above 
The Marangoni number as a function of wavenumber for heating from above is 
shown in figure 2. Critical Marangoni numbers and corresponding wavenumbers 
are tabulated in table 3. Since the initial temperature gradient is positive for 
heating from above, the Marangoni number is positive. 

The system appears to respond in three different modes depending on the 
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(1: = 0.3 

- 

10 = - - 
* - 
8 
i 

- - 
- 

3 
B ; 

- 
B 

- - 
- 
- 

0.1 I I I 1 I 1 1 1 1  I I 1 1 1 1 1 1 1  

1 OL 103 1 0+ 1 0  

Marangoni number, Mu, 

FIGURE 3. Marginally stable Marangoni number as a function of wavenumber and depth 
fraction for pure Marangoni effect flow as calculated from Smith (1966). Heating from 
above. Benzene over water, total depth = 2 mm. 

Ix*=O.l Muh = 61 50 c(*=0.1 Muh= 18500 

a * = 2 6  Mu,=1486 

FIGURE 4. Variation of critical Marangoni number, eigenfunctions and energy integrals 
with depth fraction for heating from above. Benzene over water, total depth = 2 mm. 
E,  = buoyancy energy integral, E, = surface work term, as percentage of dissipation 
integral, S = surface deflexion. 
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water depth fraction d t .  As the depth fraction increases from 0.1, the system is 
most unstable to disturbances of moderate wavenumber, corresponding to 
disturbance scales of the order of the total depth. As dg increases to about 0.4 
the configuration becomes stable for all but a narrow wavenumber range. For 

exceeding about 0.48, the minimum Marangoni number for moderate wave- 
number is greater than lo5, and the least stable state then corresponds to large 
wavenumber, or small-scale, disturbances. As dg increases beyond about 0.65 
the critical Marangoni is associated with a* = 0, an infinitely large-scale dis- 
turbance. Asymptotic values of critical Marangoni number for a* 3 0 (see 
appendix) are shown as tick marks below the a* = 0.1 axis. The variation of the 
critical Marangoni number with depth fraction is shown in figure 4. 

Critical Marangoni numbers calculated from Smith’s (1966) analysis for purely 
surface-tension driven flow are shown in figure 3. Comparison of figures 2 and 3 
shows that addition of the stable density gradient increases the critical Maran- 
goni number for the moderate and large wavenumber disturbances, as would be 
expected. The critical wavenumber is also shifted, as are the asymptotes of the 
curves for Mab+m. The filtering effect of the density gradient suggested in 
figure 2 is confirmed; disturbances corresponding to moderate wavenumbers 
which are unstable for the pure Marangoni effect case are stabilized by the 
density gradient. The critical Marangoni number for a* + 0 is again shown by 
tick marks below the axis. Apparently there is very little density influence on the 
value of the critical Marangoni number at a* = 0. 

Eigenfunctions a@), &(z) and &(z )  at the critical states (except for the low 
wavenumber cases where they are calculated for a* = 0.1) and the energy integral 
terms are shown in figure 4. Each of these eigenfunctions has been scaled to fill 
the diagrams. Actual flow patterns also depend on w ( x ,  y), a(,, y) and o ( x ,  y). 
The temperature and vertical velocity component have the same x, y dependence 
and their relative signs and shapes are properly shown in the figure. However, 
since U = aq/ax and the sign of the derivative is not known, a may not be 
shown correctly related to 8 and 8. Selection of a cell cross-sectional shape and 
thus an x, y dependence is necessary to determine the proper relations. The total 
buoyancy integral Eb and surface power term E, are given as percentages of the 
total dissipation integral, usually rounded off to the nearest whole number. The 
surface deflexion is indicated by S. For cases where surface deflexion occurs, 
S + 0, the perturbation temperature eigenfunctions andQb are not continuous 
across x = 0, as shown by (19). The temperature is continuous across the inter- 
face, however. 

The eigenfunction curves show surface deflexions for small wavenumber 
critical states while no surface deflexions occur for moderate wavenumber critical 
states. The small wavenumber large-scale disturbances might be thought of as a 
tipping of the surface. The temperature eigenfunctions for these disturbances are 
nearly linear, indicating a minimum response to a surface motion. As shown by 
the energy terms, there is very little energy drain from the surface power input 
to  the stirring of the stable density stratification for these disturbances. This 
helps to explain the slight differences between critical Marangoni numbers with 
and without the density gradient. On the other hand, there is a noticeable energy 
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FIGURE 5. Marginally stable Marangoni number as a function of wavenumber for various 
water depth fractions for heating from below. Benzene over water, total depth = 2 mm. 
-,buoyancy mode; - - -, surface deflexion mode for d: = 0.1-0.5, Marangoni effect 
mode for d: = 04-0-9. 

drain to  the buoyancy field for the critical states corresponding to moderate 
wavenumbers and this increases as d; increases. Comparison of the eigenfunctions 
for dg = 0.2 and 0.4 shows that more fluid is involved in the motion for o?; = 0.4 
and thus a greater energy is necessary to upset the stable density gradient. The 
critical Marangoni number for dg = 0.4 is lower because of the reduced tempera- 
ture drop across the shallower benzene layer. 

The sensitivity of the moderate wavenumber disturbances to depth fraction 
around d: = 0.5 is presumably due to the increased energy demand indicated in 
figure 4. The surface mechanism is unable to supply sufficient energy todrive 
these larger scale motions against the stabilizing density gradient and the small- 
scale larger wavenumber motions are excited. Because of numerical difficulties, 
eigenfunctions and energy integrals could not be calculated for the large wave- 
number cases. It is hypothesized that these disturbances are confined near the 
interface and require less energy to excite than the moderate wavenumber 
disturbances. The critical temperature difference for these cases is about 100 "C 
and they are therefore of little practical interest. 

3.3. Results for heating from below 
The Marangoni number for heating from below is shown as a function of wave- 
number in figure 5. Critical Marangoni numbers and corresponding wave- 
numbers are tabulated in table 3. The Marangoni number is negative for heating 
from below because the initial temperature gradient is negative. 

Again there seem to be three response modes. A regular pattern of stability 
curves for d: increasing from 0-1 and for moderate wavenumbers is shown with 



Thermal instabilities in two-Jluid layers 
I I I I I 1 1 1 1  I I 1 I Illy 

319 

I 0 

1 .o 

0.1 
- 102 - 103 - 104 - 105 

Marangoni number, Mab 

FIGURE 6 .  Marginally stable Marangoni number as a function of wavenumber and depth 
fraction for pure Marangoni effect flow as calculated from Smith (1966). Heating from 
below. Benzene over water, total depth = 2 m. 

solid lines. In  the same depth fraction range a second mode has a minimum 
Marangoni number at  a* = 0 which is always greater than the minimum Maran- 
goni number for the first mode. A third mode occurs for dg greater than about 
0.6, with the minimum Marangoni number corresponding to moderate wave- 
number. The variation of the critical Marangoni number with depth fraction is 
shown in figure 7. 

Comparison can be made with results based on Smith’s (1966) pure Marangoni 
effect model, figure 6. The most striking difference is that the first mode (solid line 
in figure 5) does not appear for purely surface-tension driven motion, suggesting a 
buoyancy initiated instability. The second and third modes apparently corre- 
spond to Marangoni convection. The minimum Marangoni numbers are only 
slightly displaced for these modes. In  fact the stability curves for d: = 0.7, 0.8, 
and 0.9 with and without the buoyancy effect fall on top of one another except at 
wavenumbers greater than about three times the critical wavenumber. The 
lowering of the critical Marangoni number for small wavenumber disturbances 
at small dg apparently results from the additional driving mechanism. 

The eigenfunctions and energy integrals in figure 7 tend to confirm the con- 
clusions made above. The energy input to the perturbation field for the critical 
state corresponding to  dg = 0.8 comes almost entirely from the surface work 
terms. For dz = 0.2 and 0.5, the buoyancy term makes a significant contribution 
to the energy input. The small wavenumber mode, which again involves an 
interface deflexion, is driven primarily by the Marangoni effect with a small 
contribution from the buoyancy field. 

Critical Rayleigh and Marangoni numbers for heating from below and based on 
the properties, temperature gradients and depths of each phase are shown in 
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FIGURE I .  Variation of critical Marangoni number, eigenfunctions and energy integrals 
with depth fraction for heating from below. Benzene over water, total depth = 2 mm. 
E, = buoyancy energy integral, E, = surface work term as percentage of dissipation 
integral, S = surface deflexion. 

table 3. The Rayleigh numbers for the water phase remain substantially below 
669, the critical value for fluid resting on an isothermal solid surface with a 
constant heat flux free upper surface (Nield 1964). This implies that the water is 
essentially passive to buoyancy driven motions. The benzene is also apparently 
passive to the buoyancy mechanism when dg = 0*6,0.7,0.8 and 0.9 (but not 
otherwise), which strengthens the conclusion that the instability is driven by the 
Marangoni effect. 

The benzene-phase Rayleigh number for the buoyancy driven modes (dg = 0.1 
to 0.5) exceeds 1708, the critical Rayleigh number for a single fluid confined 
between horizontal isothermal surfaces, and the expected upper stability limit 
for a single fluid. This suggests that the buoyancy instability is driven from the 
benzene phase and that the Marangoni effect tends to retard the onset of motion. 

Examination of the eigenfunctions for the buoyancy mode critical states 
tends to substantiate the passive role of the water phase. The water perturbation 
temperature profiles are nearly linear, giving the minimum response necessary to 
maintain temperature and heat flux continuity at the interface. The velocity 
component response also appears to  be minimal. The eigenfunctions for the 
Marangoni effect mode show much more involvement of the water in the motion. 

The retarding action of the Marangoni effect is also supported by study of the 
eigenfunctions. The eigenfunctions for the critical states of the buoyancy driven 
mode all show a zero in a(z) in the benzene phase. Thus two vertical cells occur in 
the benzene phase, one near the surface, associated with the Marangoni effect, and 
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FIGURE 8. Convection cell for the buoyancy mode instability showing 
two cells in the benzene phase. 

one in the bulk of the fluid, associated with buoyancy. The horizontal velocity 
components have three zeros in the benzene phase. Areversal of these components 
occurs near the top of the surface cell, indicating that the surface tension gradient 
causes flow opposite to the pattern which would result from the buoyancy mecha- 
nism alone. A sketch of this response appears in figure 8. 

The velocity patterns also can be inferred from direct consideration of the 
driving mechanisms. The water heated from below is unstably stratified but the 
Rayleigh number is always far too small for self-sustaining buoyancy convection 
to occur. The benzene, therefore, sees the water interface as a nearly isothermal, 
nearly rigid boundary; so once the benzene Rayleigh number nears 1708 there is a 
tendency for buoyancy convection to begin. In  the upper fluid, however, 
buoyancy tends to cause fluid to rise at relatively hot spots and thus draw surface 
fluid to  these spots. The surface tension mechanism, on the other hand, tends to  
pull the surface and adjacent fluid away from these hot spots. Buoyancy in the 
water phase also tends to support motion in the direction of the Marangoni- 
induced surface motion. Two counteractive mechanisms thus compete to control 
the surface flow, so that motion occurs only after one mechanism dominates the 
surface flow. Here surface tension gradients are large enough to overcome the 
counter flow supported by the density gradient, at least for the fluid adjacent to 
the surface. 

A single-cell response in each fluid is expected, as occurs for the Marangoni 
modes of the system, so that the two-cell response of the benzene at the critical 
state therefore seems unusual. Two cells certainly result in more viscous dissipa- 
tion than would occur in a single cell. This fact alone does not preclude a response 
of this type. The two energy input mechanisms clearly tend to do work at the 
interface in opposition to each other. Nield’s (1964) one-fluid analysis indicates 
that when the two mechanisms are in opposition, as occurs in these buoyancy 
modes, the critical Marangoni or Rayleigh number is raised above the maximum 
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FIGURE 9. Effect of surface tension mechanism on stability for heating 
from below. Depth fraction = 0.40. 

for a single mechanism. He does not present eigenfunctions, however, so the 
detailed response of this system is not known. In  addition, figure 9 shows the 
Rayleigh number as a function of wavenumber for d: = 0.4 both with and 
without the Marangoni effect. The critical Rayleigh number is substantially 
reduced when surface tension gradients are not allowed. The eigenfunctions for 
the pure buoyancy flow show that only one cell exists in each phase. Instability 
also occurs for a*+O for the purely density driven case. The perturbation 
temperature profiles in both fluids are nearly linear for a* = 0.1, again a minimum 
response to surface tipping. 

Single-cell response occurs in both fluids for the surface-tension-gradient driven 
modes (dg = 0.6 - 0.9). The Rayleigh numbers in both fluids remain well below 
the critical value for these cases, so the two mechanisms are not in actual conflict. 
The Marangoni effect must overcome the tendency for the benzene to circulate 
in the direction opposite to the surface motion, but need not overcome actual 
motion. Eigenfunctions and energy integrals for other depth fractions are 
given in I. 

4. Comparison with experiment 
Initiation of Marangoni convection has been visually observed in flow mor- 

phology studies, for example, Berg, Boudart & Acrivos (1966) and Koschmieder 
(1967). Visible motions presumably have sufficiently large amplitude for non- 
linear interactions to be important. Therefore visually determined critical 
Marangoni numbers can be compared only qualitatively to the predictions of 
linear stability theory. 
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Experimental measurements of critical Marangoni number for layers of total 
depth 2 mm composed of benzene over water were made for heating from above 
and below as part of the present work. Because of the difficulty of establishing 
thin layers of benzene over water, experiments were performed only a t  water 
depth fractions of 0.40. The initiation of convection was determined by detecting 
the resulting increase of the heat transfer through the layers above the value for 
pure conduction. Results for measurable-amplitude motions can be back- 
extrapolated to determine critical Marangoni number for infinitesimal motions. 
This is the same technique as that used by Schmidt & Milverton (1935) and 
Silveston (1958) to determine critical Rayleigh number for fluids confined be- 
tween horizontal isothermal solid surfaces. 

The apparatus is primarily a device for determining the overall thermal 
conductance of horizontal fluid layers. The test liquids are contained inside a 
glass cylinder between three-quarter inch thick, twelve inch diameter copper 
plates spaced by quartz posts. One plate is electrically heated and the other water 
cooled. Heat transfer through the layers is deduced from an energy balance on 
the heated plate. Both plates are carefully guard heated or cooled as necessary to 
minimize energy losses to the environment. Primary plate temperature dif- 
ference is measured with a four-couple thermopile; additional thermocouples 
allow monitoring of the plate temperature level and plate-to-guard temperature 
difference. Each plate assembly is constructed so that either the heated or cooled 
plate can be the upper or lower face of the test section. The lower plate assembly 
is supported on jacks for levelling. Sufficient peripheral equipment is provided to 
stabilize, control and measure input electrical power, to regulate, control and 
measure energy flux of the cooling water and to monitor all temperatures. The 
apparatus and the associated data reduction program reproduce the thermal 
conductivity of water to  within 2 % of previously tabulated values and yield a 
critical Rayleigh number of 1700 5 150 for a single fluid heated from below. A 
more detailed description of the apparatus is given in I. 

Results for heating from above for two water depth fractions appear in figure 
10. No increase in effective thermal conductance of the layers was measurable for 
Marangoni numbers up to five times the predicted critical value. 

The lack of convection may be due to one of two phenomena. The presence of 
surface contaminants, even in trace amounts, can suppress the Marangoni effect, 
as has been shown by Berg & Acrivos (1965). Any thermally induced convective 
motion tends to sweep a contaminant away from thelow-surface-tension, warmer 
regions of the surface. Since surface tension is normally reduced by the presence of 
foreign substances, the resulting surface concentration profile causes a surface 
tension gradient which opposes the thermally induced gradient. Surface tension 
is much more strongly dependent on chemical species concentration than tem- 
perature, so that extermely small concentrations of contaminants may nullify 
the thermally induced Marangoni effect. Berg, Boudart & Acrivos (1966) were 
unable to detect Marangoni effect evaporative convection in water. They suggest 
that the large surface tension of water is very easily reduced by contamination, 
thus shutting off the surface mechanism. Measurements of water-benzene inter- 
facial tension with a ring tensiometer showed no measurable variation for the 
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FIGURE 10. Nusselt number versus Marangoni number for heating from above. Benzene 
overwater, total depth 2 mm. Water depth fraction: 0, 0.39; A, 0.39; 0, 0.46. 
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FIGURE 11. Nusselt number versus Rayleigh number for heating from below. Benzene over 
water, total depth 2 mm, water depth fraction 0.40. 

same sample over a period of days. The uncertainty in these measurements is 
about 5 yo, however, and much smaller variations in interfacial tension due to 
contamination can suppress the thermally driven Marangoni effect. No visible 
evidence of contamination was noted for these tests, but again, contamination 
need not be visible for the Marangoni effect to be suppressed. The present analysis 
does not account for interfacial contamination. 
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It is also possible that, while this system is unstable for infinitesimal distur- 
bances when heated from above, finite disturbances are damped or amplitude- 
limited by interactions with the stable density gradient field. That is, no measur- 
able convection actually occurs. A nonlinear analysis would be required for a 
theoretical examination of this hypothesis. 

Results for a water depth fraction of 0.4 for heating from below are shown in 
Rayleigh number co-ordinates in figure 11. A distinct break in the data occurs, 
corresponding to a Rayleighnumber of 700 or a Marangoni number of about 2800. 
Values of the critical Rayleigh number with and without the Marangoni effect are 
also indicated in the figure. The calculations were carried out for properties 
evaluated at 36 "C, the approximate experimental mean fluid temperature. 
Property ratios and input parameters at this temperature are collected in table 2. 

Figure 9 shows that pure buoyancy driven flow occurs at  a critical Rayleigh 
number less than the critical Rayleigh number for the case when the Marangoni 
effect is also present. The fact that the measured critical Rayleigh number falls 
between these limits suggests that surface contamination has retarded, but not 
completely suppressed, the Marangoni effect in these experiments. 

Berg & Morig (1969) studied the effect of density gradient on Marangoni 
convection caused by acetic acid transfer across a water/benzene + chlorobenzene 
interface. Varying the chlorobenzene concentration in the benzene resulted in 
stabilizing or destabilizing density gradients in either or both phases. Stabilizing 
density gradients confined the Marangoni convection to a region near the inter- 
face, with no apparent motion in the bulk fluid. Nearly neutral density gradients 
resulted in a quasi-cellular flow involving much of the bulk fluid. Unstable 
density gradients produced motions extending deep into the unstably stratified 
fluid, with intense small-scale agitation in a thin layer adjacent to the interface. 

The results of their experiments are in qualitative agreement with the analysis 
presented here. The tendency for the motion to be suppressed and confined near 
the interface for stably stratified fluid is predicted by this analysis as is the 
greater involvement of fluid for unstable stratification. The intense agitation near 
the interface suggests the two-cell critical state also found in the analysis. 

5. Conclusion 
Including density variation in the analysis of two-fluid Marangoni instability 

significantly alters stability limits. Comparison with Smith's (1966) pure 
Marangoni effect analysis shows that the critical Marangoni number is increased 
and certain wavelength disturbances are stabilized when heating is from above. 
Heating from below lowers the critical Marangoni number and adds a buoyancy 
driven instability mode. The critical state for the buoyancy mode has two cells 
in one phase because the two mechanisms tend to  drive the interface in opposite 
directions. 

Two classes of flow result, with and without surface deflexion. The critical 
Marangoni number for some depth fractions occurs for the surface deflected 
mode, indicating the need to include the possibility of surface deflexions. 

Experiments to measure the critical Marangoni number in layers of total depth 
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2mm consisting of benzene over water indicate no detectable fluid motion for 
heating from above. The critical Rayleigh number for heating from below falls 
between the values predicted with and without the Marangoni effect. Suppression 
of the Marangoni effect by surface contamination would explain these discrep- 
ancies. Qualitative agreement with experiments by Berg & Morig (1969) is shown. 
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Appendix. Asymptotic analysis for zero wavenumber 
The numerical solutions indicate the existence of alower branch of the stability 

loops which appears to have minimum Marangoni number at a wavenumber a* 
equal to zero. The values of critical Marangoni number for a* = 0 are found from 
an asymptotic analysis for a* -+ 0. Proceeding by expanding the eigenfunction 
and the eigenvalue Mu, (and thus Ra,) in powers of a*2 produces 

0 = 0(0) + a*zm + . . . , 
Ra, = R a t )  + a*2Raf) + . . . , 
Ma, = M a t )  + a*2Maf) + . . . . 

Substituting into (16) and into the boundary and interface conditions and sorting 
out powers of a*2 yields equations for the different orders of 8. 

The equations for &(O) are linear and homogeneous so that a trivial solution is 
expected. However, linear eigenfunctions corresponding to zero eigenvalues 
exist for this set. Subsequent solution of the equation set for $(l) yields, after 
straightforward manipulation, an expression for Marangoni number at zero 
wavenumber : 

Asymptotic values of Ma, for various depth fractions of the water-benzene 
system considered above are indicated in figures 2 and 5 by tick marks below the 
a* = 0.1 axis. 

If I? is set identically zero, (A 1) is valid for the pure Marangoni effect case 
treated by Smith (1966). Converted to his notation, (A 1) gives values corre- 
sponding to the apparent asymptotes in the several cases he presented. The 
asymptotic limits for the buoyancy-free water-benzene system are indicated by 
tick marks in figures 3 and 6. Asymptotic values of the Rayleigh number can also 
be extracted from (A 1). 

The critical eigenfunctions corresponding to a* = 0 are the linear temperature 
profiles consistent with the shifted interface location. There is no accompanying 
fluid motion. 
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